Spulenflussverkettung über Drehwinkel

Das Beispiel zeigt die Verwendung der Routinen calc_field_single, rotate und flux_winding_wk zur Berechnung der Spulenflussverkettung über dem Drehwinkel. Die Werte werde für jede Drehstellung in eine Textdatei geschrieben.

Skript-Datei


--------------------------------------------------------------------------------
-- Allgemeine Einstellungen ----------------------------------------------------
--------------------------------------------------------------------------------

exit_on_error = false     -- Verhalten nach Fehler
exit_on_end = true        -- Verhalten nach Skriptausführung
verbosity = 2             -- Grad der Bildschirmmeldungen

-------------------------------------------------------------------------------
-- Parameterdefinition --------------------------------------------------------
-------------------------------------------------------------------------------

Q = 12          -- Nutzahl
P = 8           -- Polzahl

Da = 100        -- Statoraußendurchmesser
Di = 55         -- Statorinnendurchmesser
s = 3           -- Nutschlitzbreite
ag = 1          -- Luftspaltweite
bz = 7          -- Zahnbreite
h1 = 1.5        -- Zahnkopfhöhe 1
h2 = 2          -- Zahnkopfhöhe 2
hj = 8          -- Jochhöhe
hrs = 6         -- Rückschlusshöhe
hm = 5          -- Magnethöhe
ls = 150        -- Paketlänge

Qm = Q/4        -- Nutzahl Modell
Pm = P/4        -- Polzahl Modell

urs = 1000      -- Permeabilität Stator
urr = 1000      -- Permeabilität PM-Rückschluss
Br = 1.2        -- Remanenz PM
urm = 1.05      -- Rel. Permeabilität PM

Nc = 100        -- Spulenwindungszahl

--------------------------------------------------------------------------------
-- Modellerstellung ------------------------------------------------------------
--------------------------------------------------------------------------------

new_model_force("example","PMSM IL OM, parametrische Definition")

global_unit('mm')             -- Globale Einheit (m, cm, mm)
pickdist(0.001)             -- Abstand Schnappen auf Knotenpunkt
blow_up_wind(0,0,55,55)     -- Fenstergröße anpassen
cosys('cartes')

------------------------------
----- Stator -----------------
------------------------------

-- Berechnung der Koordinaten

x = {}
y = {}
for i=1, 15 do
  x[i]=0
  y[i]=0
end

x[1],y[1] = pd2c(Da/2,0)
x[2],y[2] = pd2c(Da/2,180/Q)
x[3] = Di/2*math.cos(math.asin(s/Di))
y[3] = s/2
x[4] = x[3]+h1
y[4] = s/2
x[5],y[5] = pd2c(Di/2,180/Q)
x[6] = Di/2+h1+h2;
y[6] = y[5]/x[5]*x[6]-bz/2/math.cos(pi/Di)
x[7] = Da/2-hj;
y[7] = y[5]/x[5]*x[7]-bz/2/math.cos(pi/Di)
x[8] = x[7]
x[9],y[9] = pd2c(vlen(x[4],y[4]),180/Q)
x[10] = (y[6]+x[5]/y[5]*x[6])/(y[5]/x[5]+x[5]/y[5])
y[10] = y[5]/x[5]*x[10]
x[11] = (y[7]+x[5]/y[5]*x[7])/(y[5]/x[5]+x[5]/y[5])
y[11] = y[5]/x[5]*x[11]
x[12] = Di/2
x[13] = x[4]
x[14] = Di/2-ag/3
x[15],y[15] = pd2c(Di/2-ag/3,180/Q)

-- Knotenkettenerstellung

agnp = 1         -- Knotenteilung im Luftspalt
ndt(ag*2/3)

nc_circle(x[14],y[14],x[15],y[15],360/Q/2/agnp+1)
nc_circle(x[1],y[1],x[2],y[2],0)
nc_circle(x[13],y[13],x[4],y[4],0)
nc_circle(x[3],y[3],x[5],y[5],0)
nc_line(x[3],y[3],x[4],y[4],0)
nc_line_cont(x[6],y[6],0)
nc_line_cont(x[7],y[7],0)
nc_line_cont(x[8],y[8],0)

nc_line(x[12],y[12],x[13],y[13],0)
nc_line_cont(x[8],y[8],0)
nc_line_cont(x[1],y[1],0)
nc_line(x[14],y[14],x[12],y[12],0)
nc_line(x[15],y[15],x[5],y[5],0)
nc_line_cont(x[9],y[9],0)
nc_line_cont(x[10],y[10],0)
nc_line_cont(x[11],y[11],0)
nc_line_cont(x[2],y[2],0)

-- Vernetzung

create_mesh_se(Da/2-hj/2,0+hj/2)
create_mesh_se((Da+Di)/4,s/4)
create_mesh_se(Di/2+h1/2,s/4)

-- Definition Subregionen

def_new_subreg(Da/2-hj/2,0+hj/2,"Stator",11)

-- Spiegeln und Kopieren

mirror_nodechains(x[2],y[2],x[15],y[15])

x0,y0 = pd2c(Di/2-ag/3,0)
x1,y1 = pd2c(Da/2,0)
x2,y2 = pd2c(Da/2,360/Q)
x3,y3 = pd2c(Di/2-ag/3,360/Q)
rotate_copy_nodechains(x0,y0,x1,y1,x2,y2,x3,y3,Qm-1)

------------------------------
----- Rotor ------------------
------------------------------

-- Berechnung der Koordinaten

x[1],y[1] = pd2c(Di/2-ag*2/3,0)
x[2],y[2] = pd2c(Di/2-ag*2/3,360/P)
x[3],y[3] = pd2c(Di/2-ag,0)
x[4],y[4] = pd2c(Di/2-ag,360/P)
x[5],y[5] = pd2c(Di/2-ag-hm,0)
x[6],y[6] = pd2c(Di/2-ag-hm,360/P)
x[7],y[7] = pd2c(Di/2-ag-hm-hrs,0)
x[8],y[8] = pd2c(Di/2-ag-hm-hrs,360/P)

-- Knotenketten

nc_circle(x[1],y[1],x[2],y[2],360/P/agnp+1)
nc_circle(x[3],y[3],x[4],y[4],0)
nc_circle(x[5],y[5],x[6],y[6],0)
nc_circle(x[7],y[7],x[8],y[8],0)

nc_line(x[7],y[7],x[5],y[5],0)
nc_line_cont(x[3],y[3],0)
nc_line_cont(x[1],y[1],0)
nc_line(x[8],y[8],x[6],y[6],0)
nc_line_cont(x[4],y[4],0)
nc_line_cont(x[2],y[2],0)

-- Vernetzung

create_mesh_se(Di/2-ag*5/6,ag/3)
create_mesh_se(Di/2-ag-hm/2,ag)
create_mesh_se(Di/2-ag-hm-hrs/2,ag)

-- Definition Subregionen

def_new_subreg(Di/2-ag-hm-hrs/2,ag,"Rückschluss",11)

-- Spiegeln und Kopieren

rotate_copy_nodechains(x[7],y[7],x[1],y[1],x[2],y[2],x[8],y[8],Pm-1)

-- Luftspalt

x0,y0 = pd2c(Di/2-ag*2/3,0)
x1,y1 = pd2c(Di/2-ag/3,0)
nc_line(x0,y0,x1,y1,0)

x0,y0 = pd2c(Di/2-ag*2/3,360*Pm/P)
x1,y1 = pd2c(Di/2-ag/3,360*Pm/P)
nc_line(x0,y0,x1,y1,0)

create_mesh_se(Di/2-ag/2,ag)

-------------------------------
----- Randbedingungen ---------
-------------------------------

x0,y0 = pd2c(Di/2-ag-hm-hrs,0)
x1,y1 = pd2c(Da/2,0)
x2,y2 = pd2c(Di/2-ag-hm-hrs,360.0*Pm/P)
x3,y3 = pd2c(Da/2,360*Pm/P)

def_bcond_vpo(x1,y1,x3,y3,0)
def_bcond_vpo(x2,y2,x0,y0,0)
def_bcond(x3,y3,x2,y2,x0,y0,x1,y1,4)

-------------------------------
------ Wicklungen -------------
-------------------------------

tauq = 360/Q               -- Nutteilungswinkel
Rq = (Di/2+Da/2-hj)/2      -- mittlerer Nutradius

x,y = pd2c(Rq,tauq/4)
wkey = def_new_wdg(x,y,"cyan","Strang 1",Nc,0.0,wo)
x,y = pd2c(Rq,tauq-tauq/4)
add_to_wdg(x,y,wsamekey,wi,wser)

x,y = pd2c(Rq,2*tauq+tauq/4)
def_new_wdg(x,y,"yellow","Strang 2",Nc,0.0,wi)
x,y = pd2c(Rq,3*tauq-tauq/4)
add_to_wdg(x,y,wsamekey,wo,wser)

x,y = pd2c(Rq,tauq+tauq/4)
def_new_wdg(x,y,"magenta","Strang 3",Nc,0.0,wi)
x,y = pd2c(Rq,2*tauq-tauq/4)
add_to_wdg(x,y,wsamekey,wo,wser)

-------------------------------
---- Materialeigenschaften ----
-------------------------------

-- Stator und PM-Rückschluss

def_mat_fm(Da/2-hj/2,ag,urs,100)
def_mat_fm(Di/2-ag-hm-hrs/2,ag,urr,100)

-- Permanentmagnete

for i=0, (Pm/2-1) do
  x,y = pd2c(Di/2-ag-hm/2,360.0/P*(2*i+1)-180.0/P)
  def_mat_pm(x,y,"red",Br,urm,0,m.radial,100)
end
for i=1, Pm/2 do
  x,y = pd2c(Di/2-ag-hm/2,360.0/P*2*i-180.0/P)
  def_mat_pm(x,y,"green",Br,urm,180,m.radial,100)
end

-----------------------------------------------------------
-- Definition Grunddaten der Maschine ---------------------
-----------------------------------------------------------

m.num_slots       =         Q   --   Number of Slots Q
m.num_poles       =         P   --   Number of Poles 2p            (>= 2)
m.npols_gen       =         Pm  --   Number of Poles simulated     (>= 1)

pre_models("basic_modpar");

--------------------------------------------------------------------------------
----- Berechnung ---------------------------------------------------------------
--------------------------------------------------------------------------------

-- Drehung, Fluss- und Drehmomentberechung in Skript (modular)

cosys('polar')

agr = 0.5*(Di-ag)       -- Luftspaltradius
phi = 0.0               -- Anfangswinkel
dphi = 1.0              -- Winkelinkrement
NRot = 720.0/P/dphi+1   -- Anzahl Drehschritte

outputfile=io.open("example.txt","w+")
outputfile:write("# phi [°] Psi_wk1 [Vs] T [Nm]\n");
for i=1,NRot do
  calc_field_single(1,"actual",0.01)           -- Feldberechnung

  Psi = flux_winding_wk(wkey)*ls*P/Pm        -- Flussberechnung

  m.coord_x1, m.coord_y1 = pd2c(agr,0.0)     -- Drehmomentberechnung
  m.coord_x2, m.coord_y2 = pd2c(agr,359.5)
  m.arm_length = ls
  post_models("force_torque","F_M")
  T = F_M[3]

  -- Ausgabe in Logdatein und Ergebnisdatei
  printf("  > phi = %g deg, Psi = %g Vs, M = %g Nm",phi,Psi,T)
  outputfile:write(string.format("%7.3f   %9.6f    %9.6f\n",phi,Psi,T));

  phi=dphi*i                  -- Drehung des Rotors
  if (phi==360.0*Pm/P) then
    rotate(agr,dphi-phi,"inside","increment")  -- Drehung über Modellgrenzen hinaus
  else
    rotate(agr,dphi,"inside","increment")      -- Drehung innerhalb der Modellgrenzen
  end
end
io.close(outputfile)

rotate(0,0,0,"reset")        -- Rücksetzen auf Anfangszustand

save_model('close')